Matrices, Moments, and Rational Quadrature

نویسندگان

  • G. LÓPEZ LAGOMASINO
  • L. WUNDERLICH
  • Richard S. Varga
چکیده

Abstract. Many problems in science and engineering require the evaluation of functionals of the form Fu(A) = uT f(A)u, where A is a large symmetric matrix, u a vector, and f a nonlinear function. A popular and fairly inexpensive approach to determining upper and lower bounds for such functionals is based on first carrying out a few steps of the Lanczos procedure applied to A with initial vector u, and then evaluating pairs of Gauss and Gauss-Radau quadrature rules associated with the tridiagonal matrix determined by the Lanczos procedure. The present paper extends this approach to allow the use of rational Gauss quadrature rules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generating nested quadrature formulas for general weight functions with known moments

We revisit the problem of extending quadrature formulas for general weight functions, and provide a generalization of Patterson’s method for the constant weight function. The method can be used to compute a nested sequence of quadrature formulas for integration with respect to any continuous probability measure on the real line with finite moments. The advantages of the method include that it w...

متن کامل

The structure of matrices in rational Gauss quadrature

This paper is concerned with the approximation of matrix functionals defined by a large, sparse or structured, symmetric definite matrix. These functionals are Stieltjes integrals with a measure supported on a compact real interval. Rational Gauss quadrature rules that are designed to exactly integrate Laurent polynomials with a fixed pole in the vicinity of the support of the measure may yield...

متن کامل

High-order Time-stepping for Galerkin and Collocation Methods Based on Component-wise Approximation of Matrix Functions

This paper describes an effort to develop timestepping methods for partial differential equations that can overcome the difficulties that existing methods have with stiffness of the system of ordinary differential equations that results from spatial discretization. Stiffness is caused by the contrasting behavior of coupled components of the solution, and makes “one-size-fits-all” polynomial and...

متن کامل

Truncated generalized averaged Gauss quadrature rules

Generalized averaged Gaussian quadrature formulas may yield higher accuracy than Gauss quadrature formulas that use the same moment information. This makes them attractive to use when moments or modified moments are cumbersome to evaluate. However, generalized averaged Gaussian quadrature formulas may have nodes outside the convex hull of the support of the measure defining the associated Gauss...

متن کامل

Rational Gauss Quadrature

The existence of (standard) Gauss quadrature rules with respect to a nonnegative measure dμ with support on the real axis easily can be shown with the aid of orthogonal polynomials with respect to this measure. Efficient algorithms for computing the nodes and weights of an n-point Gauss rule use the n × n symmetric tridiagonal matrix determined by the recursion coefficients for the first n orth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008